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Topological contributions to the partition function for 
2D massive fermions 

M V Manias?, C M Nabnt and M L Trobot 
Departamento de Fisica. Universidad Nacional de La Plata, C.C. 67, (1900) La Plata, 
Argentina 

Received 28 September 1993 

Abstract. We study the contribution of topologically non-trivial Sectors to the vacuum 
functional Z," of a model of massive fermions in two dimensions. By using recent results 
on non-minimal correlation functions we can Mite Z,, as a kind of Sector expansion. In 
this series, the contribution of each sector is given by integrals of minimal correlation 
functions evaluated in the massless theory. Finally we comment on the application of our 
result to the analysis of some special cases. In particular we briefly show that Coleman's 
equivalence between the massive Thirring and sine-Gordon models is not aKected when 
topology is taken into account. 

Following the inspiring paper by Bardakci and Crescimanno [ I  J, a systematic procedure 
for the analysis of fermionic 2D models in topological backgrounds has been developed 
1241. In particular, the minimal correlation functions first defined in [I], have been 
computed for Abelian (Thirring, Schwinger) 12, 31 and non-Abelian (QCD,) [4] models. 

In a more recent paper 1.51 the more complex non-minimal correlation functions [I] 
have been explicitly evaluated. It has been stressed in [5 ]  that these functions would 
play a crucial role when considering massive fermions. In fact, in previous investigations, 
only massless fermions were taken into account. In this condition it has been established, 
as a general rule, that the partition function Z=ZNZN (N indicates the topological 
sector) receives the contribution of the N=O sector only. This raises an interesting 
question about the role that the fermion mass will play~when computing the partition 
function. In other words: will non-trivial sectors contribute to the massive partition 
function 23 

The purpose of this work is to answer this question. To this end we have applied 
the path-integral method of [5 ]  to the model considered in [I]  with massive fermions. 
We have found that all topological sectors contribute to Z, and we have obtained a 
closed expression for each contribution in terms of the minimal functions corresponding 
to the massless theory. 

~~ 

We start from the partition function 

Z,n=C DA:D'?DYexp d z x ~ ( i 8 + n z + d N ) Y  (1) 
N s .  1 
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where q, Y are massive Dirac fermion fields coupled to an Abelian vector field which 
carries a topological charge N. The partition function Z,. is then written as a sum over 
all topological sectors. 

Note that the massive Dirac operator in (1) does not have zero modes solutions 
[6]. However, one can find a relation with the massless =se by performing a perturbative 
expansion in the mass. Indeed, writing the mass term as 

M V Manias et a1 

with 

and 

we obtain 

where ( >O means v.e.v. with respect to the massless theory. The expansion in the mass 
can then be written as: 

mf(- - l ) j  zm=zo 1 - 
j - o  j !  

where Zo = 1, and to j >  1 : 

Z j = ( I (  i -  fI 1 d2x,) i-l fi  (S++S-) (x , ) )  0 

(4) 

(5) 

At this stage it becomes apparent that Zj will be a sum of minimal and non-minimal 
functions [5 ] .  To illustrate this point, let us write explicitly. 2q, : 
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In the above expression we have used the general definitions [l ,  51: 

-U,,, hl) 

Jr;ilN)(~o,. . . , & - I )  

. . . , x,.yi -I ) =~&(x,) . . . si(x,,,,, - , j >, (7) 

=<si(xO)si(xl). . . si(XINI-I)S+(XIN/). . . si(x lW+~(n- lM)- l )  

ST(Xi(IM+")). . . s&n-~I)>o .' - (8) 
where the subscript. ( 5  INI) denotes the topological sector that contributes to each 
function. For minimal functions A*lM, I AI has been shown~to be equal to the number 
of points [l ,  21. whereas for the non-minimal correlations "&, the number of points 
n is greater than INI. 

Now it is a simple exercise to write the jth contribution to Z,,, as: ' 

for j 2 2  and 

'with 

, i j ( X 0 , .  . . , Xj-]) ='2,(xo, . .. . , xj-l)+A-j(xo.. . . ,Xi-!). (11) 

Due to the presence of the integrals in the expansion of Z,", by conveniently renam- 
ing coordinates, one can relate the non-minimal function Xj-= appearing in (9) with 
the one obtained in [5] as follows: 

dxo.. .dzxj-lML-a) s z  
From now on we will drop the first subscript 1 in the RHS of (12). 
Replacing (12) in (9) we obtain: 

In  [5] we have shown that there exists a particular distribution for the topological 
charge for which the non-minimal function ;V&&(XO,. . . , x ~ - ~ ) ,  that appears in (13), 
can be factorized in terms of minimal functions AQ-z&~o, . . . , xij-=l- I)  and fer- 
mionic Green functions. The minimal correlations take into account the contribution 
of the zero modes of the model. 
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We obtain for the N&,(x0, . . . , x , - ] )  functions the following form: 

”-2k)(Xo,. . . , X j - I )  

where d e b ( g i - 8 )  is the determinant without zero modes with P carrying a charge 
j - 2 ,  and 

8$)(%, . . . , xz(.)=G$)(~o,. . . , XZ) X F(xo,. . . , XS) (15) 

where Gg) is a 2k-point amplitude for massless fermions (N=O sector) and F is a 
certain function which depends on the same coordinates as Gg). The explicit form of 
F is rather involved and we do not reproduce it here. The interested reader can find it 
in [5]. The relevant point here is that both factors in (14) (A‘ and 8) are functions of 
a different set of coordinates. This coordinate decoupling will enable us to rewrite (4) 
in a more illuminating way. Indeed, by carefully analysing the contribution of every 
topological sector to the term corresponding to each order in the mass expansion, we 
shall be able to write Z,,, in the form: 

Z8” =E z!p. (16) 
N 

As all sectors contribute to one given order in”, that is not, in principle, an easy 
task. However (14) will greatly simplify this problem by allowing us to formally sum 
the contributions of the non-topological 8‘” factors. Inserting (15) in (13) we get: 

Now we can replace (17) in (4) to obtain: 

where 

and f(m) is given by (19) with Gg) replaced by 
defined: 

(see equation (15)). We have also 

where dett’(iJ+I9 is the fermionic determinant without zero modes and with f l  
carrying a charge i. 
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Now we can use the explicit form for J l i  in order to show that $;/pi does not 
depend on the coordinates ([SI): 

lil - I 

/ =0  
Ai=de$'(i+4F) n lS-x,I-2. (21)  

We then have 

(22) 
2 A 

E= 
p i  de$'($++P) +det$''(g+4F) 

and thus the massive partition function can be finally cast in the form: 

x d'x,, . . . , d'xi-,pi(xo,. . . ,xi-, )I. s (23)  

This is our main result. We have been able to write Z,, as a sum of contributions, 
each coming from one particular topological sector. This is in contrast with all previous 
calculations for the massless case where Z is not modified by the presence of the 
topological background. The price we have paid in order to get this sector expansion 
is that now the dependence on the mass has become implicit through r (m)  and f ( m ) .  
On the other hand the dependence on the topological sector is explicit~now in terms of 
integrals of minimal correlations. Note that r(m), r ( m )  +O when m +0, and we reob- 
tain the massless result, as expected. 

We want to stress here that although (23) was obtained for the model considered 
in [ l ] ,  the same procedure could be followed for other ZJ modekin order to get a 
similar expansion. In particular for the massless Thirring model it has been shown that 
all minimal functions vanish for any finite value of the couplnig constant 121. This 
means that for the massive Thimng model we shall have 

(24) 

Therefore we see that for this particular model only the N=O sector contributes to 
the partition function, even id the massive case. This fact raises an interesting question 
conceming the validity of the bosonization rules, relating the massive Thirring and sine- 
Gordon models [7], when topology is taken into account. 

Thhirring- Thirring. N =  0 
2, -Z,A[~ + r ( m ) ]  = Z, 

Let us consider the sine-Gordon vacuum functional given by 

where topology is included by writing 
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Performing an expansion in a and evaluating the resulting v.e.v.'s with respect to 
the free bosonic model we obtain: 

ZsG = KZ:Go (27) 

where K=ZN is an infinite constant which can be absorbed as a normalization (it will 
disappear when computing v.e.v.'s). 

We then conclude that Coleman's equivalence between the massive Thirring and 
sine-Gordon models will hold when non-trivial topological sectors are taken into 
account. 

A similar analysis can be done for QED2 with massive fermions (massive Schwinger 
model [SI). In this case the minimal correlations are non-vanishing and thus a non- 
trivial change will take place in Z,n 131. As in the Thirring case, the equivalence between 
this model and a massive sine-Gordon can be explored in this context. 

Conceming the sine-Gordon action, the only change is the addition of a mass term 
fp2&. One can then follow the same steps that led us to (27). Thus, one obtains 

Z s , p  = Kz!<;. (28) 

The Lagrangian density for massive QEDz is given by 

q g + m  + e&V+ $F:. . (29) 

Specializing (4) for the corresponding vacuum functional we get 

with 3, given by (9). For our present purpose it is convenient to rewrite 3, as 

where we have renamed pj in the form 

pj=Jr< I'  (32) 

At this point we can extract the N=O contribution from (31) by isolating the term 
that corresponds to k = j / 2 :  

One can verify that the first term in the right-hand side of (33) when replaced in 
(30) allows us to obtain 

Now we use the well known result for N=O [7, 81: 
N - 0  - z N = O  

zSchw,!n- SG.p.  (35) 
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This, together with the fact that minimal and non-minimal functions are non- 
vanishing for the massless Schwinger model [3], shows that Zschw," and ZSG.~ cannot 
be trivially identified when a topologically non-trivial configuration is present. 

In summary, we have studied the contributions of topologically nontrivial sectors 
to the vacuum-to-vacuum functional Z, of ZD massive models. Our main result is given 
by (23) which provides a sector expansion for Z,,, . In this context, we have also discussed 
how the presence of a classical background affects certain bosonization equivalences, 
well established for N=O. In particular, we found that Coleman's result [7] involving 
the massive Thirring and massless sine-Gordon models remains valid even for N#O 
(equations (24) and (27)). On the contrary, the partition functions corresponding to 
massive Schwinger and massive sine-Gordon,models [7,8] are not equal but differ by 
a sum of minimal and non-minimal functions that picks up the contribution of every 
non-trivial sector (equations (34) and (35)). 
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